
UniCODE 풀이

Solution Slide for UniCODE

김현수 박서영 박원 신승원 안윤표 이서윤 이종서

UNIST HeXA

2019년 11월 2일

Sponsor Companies

Many companies funded us for holding Uni-CODE 2019.

We will introduce such companies.

Sponsor - Startlink

Sponsor - Samsung Software Membership

Sponsor - NAVER

Problems

Problem Time Limit Memory Limit

A Command 500ms 256MB

B Baba is Rabbit 1000ms 512MB

C Fibonacci song 1000ms 512MB

D What does UNIST stand for? 1000ms 512MB

E Bus Route 1000ms 512MB

F Clock 1000ms 512MB

G Ctrl cv 2000ms 512MB

H Course 1000ms 512MB

Command

Submissions: 37(Onsite)

Accepted: 12(Onsite)

First Solver: 한준구(Onsite), pichulia(Open)

Proposed by: Won Park

Command

Check whether the length of the given string is 7 or not.

Check whether the given string is in the form of “AABAABB”

or not.

Command

Check whether the length of the given string is 7 or not.

Check whether the given string is in the form of “AABAABB”

or not.

Command

Implementation in C/C++

p r i n t f (”%d\n” , s t r l e n (a) == 7 &&

a [0] == a [1] && a [0] == a [4] &&

a [2] == a [3] && a [2] == a [5] && a [2] == a [6] &&

a [0] != a [2]) ;

Baba is Rabbit

Submissions: 18(Onsite)

Accepted: 3(Onsite)

First Solver: 한동규(Onsite), pichulia(Open)

Proposed by: Jongseo Lee

Baba is Rabbit

Use std::map(C++) or dict(Python) to assign an integer to

each object and construct a graph.

Then, the graph is acyclic.

Use DFS/BFS to find objects that can be obtained from

Baba’s transformation. And sort such objects.

Time complexity is O(N logN).

Baba is Rabbit

Use std::map(C++) or dict(Python) to assign an integer to

each object and construct a graph.

Then, the graph is acyclic.

Use DFS/BFS to find objects that can be obtained from

Baba’s transformation. And sort such objects.

Time complexity is O(N logN).

Baba is Rabbit

Use std::map(C++) or dict(Python) to assign an integer to

each object and construct a graph.

Then, the graph is acyclic.

Use DFS/BFS to find objects that can be obtained from

Baba’s transformation. And sort such objects.

Time complexity is O(N logN).

Baba is Rabbit

Use std::map(C++) or dict(Python) to assign an integer to

each object and construct a graph.

Then, the graph is acyclic.

Use DFS/BFS to find objects that can be obtained from

Baba’s transformation. And sort such objects.

Time complexity is O(N logN).

Fibonacci song

Submissions: 32(Onsite)

Accepted: 0(Onsite)

First Solver: -(Onsite), pichulia(Open)

Proposed by: Jongseo Lee and Won Park

Fibonacci song

First, we consider {fn mod M}.

One can easily observe that {fn mod M} is periodic.

Fibonacci song

First, we consider {fn mod M}.

One can easily observe that {fn mod M} is periodic.

Fibonacci song

First, we consider {fn mod M}.

One can easily observe that {fn mod M} is periodic.

Theorem

{fn mod M} has period at most M2.

Fibonacci song

First, we consider {fn mod M}.

One can easily observe that {fn mod M} is periodic.

Theorem

{fn mod M} has period at most M2.

Proof: Trivial from pigeon-hole principle.

Fibonacci song

Therefore, the new sequence has period at most 4M2.

So we can pre-compute the one period of the new sequence in

O(M2).

Then, in O(1) time, we can answer each query. Whole time

complexity is O(M2 + Q).

Warning: Since input value is very large, one should use 64-bit

integer type, such as int64 t or long long.

Fibonacci song

Therefore, the new sequence has period at most 4M2.

So we can pre-compute the one period of the new sequence in

O(M2).

Then, in O(1) time, we can answer each query. Whole time

complexity is O(M2 + Q).

Warning: Since input value is very large, one should use 64-bit

integer type, such as int64 t or long long.

Fibonacci song

Therefore, the new sequence has period at most 4M2.

So we can pre-compute the one period of the new sequence in

O(M2).

Then, in O(1) time, we can answer each query. Whole time

complexity is O(M2 + Q).

Warning: Since input value is very large, one should use 64-bit

integer type, such as int64 t or long long.

Fibonacci song

Therefore, the new sequence has period at most 4M2.

So we can pre-compute the one period of the new sequence in

O(M2).

Then, in O(1) time, we can answer each query. Whole time

complexity is O(M2 + Q).

Warning: Since input value is very large, one should use 64-bit

integer type, such as int64 t or long long.

What does UNIST stand for?

Submissions: 0(Onsite)

Accepted: 0(Onsite)

First Solver: -(Onsite), pichulia(Open)

Proposed by: Jongseo Lee

What does UNIST stand for?

How can we solve the problem if

len(W1) = len(W2) = · · · = len(WN) = 1?

We can approach using dynamic programming, by defining

D[i][j] as the number of way P1 + P2 + · · ·+ Pi being prefix

of “UNIST” of length j , where i ≤ N, j ≤ 5.

Then, we have following recurrence relation.

What does UNIST stand for?

How can we solve the problem if

len(W1) = len(W2) = · · · = len(WN) = 1?

We can approach using dynamic programming, by defining

D[i][j] as the number of way P1 + P2 + · · ·+ Pi being prefix

of “UNIST” of length j , where i ≤ N, j ≤ 5.

Then, we have following recurrence relation.

What does UNIST stand for?

How can we solve the problem if

len(W1) = len(W2) = · · · = len(WN) = 1?

We can approach using dynamic programming, by defining

D[i][j] as the number of way P1 + P2 + · · ·+ Pi being prefix

of “UNIST” of length j , where i ≤ N, j ≤ 5.

Then, we have following recurrence relation.

What does UNIST stand for?

How can we solve the problem if

len(W1) = len(W2) = · · · = len(WN) = 1?

We can approach using dynamic programming, by defining

D[i][j] as the number of way P1 + P2 + · · ·+ Pi being prefix

of “UNIST” of length j , where i ≤ N, j ≤ 5.

Then, we have following recurrence relation.

D[i][j] = D[i − 1][j] +

D[i][j − 1] if Wi [0] == ”UNIST”[j]

0 otherwise

What does UNIST stand for?

Then, in general, we can generalize previous recurrence

relation to solve the problem.

with same definition of D[i][j].

Since the recurrence relation is hard to write, I omitted in this

slide. However, it is still easy to implement so don’t worry.

Total time complexity is O(N), with large constant factor.

What does UNIST stand for?

Then, in general, we can generalize previous recurrence

relation to solve the problem.

with same definition of D[i][j].

Since the recurrence relation is hard to write, I omitted in this

slide. However, it is still easy to implement so don’t worry.

Total time complexity is O(N), with large constant factor.

What does UNIST stand for?

Then, in general, we can generalize previous recurrence

relation to solve the problem.

with same definition of D[i][j].

Since the recurrence relation is hard to write, I omitted in this

slide. However, it is still easy to implement so don’t worry.

Total time complexity is O(N), with large constant factor.

What does UNIST stand for?

Then, in general, we can generalize previous recurrence

relation to solve the problem.

with same definition of D[i][j].

Since the recurrence relation is hard to write, I omitted in this

slide. However, it is still easy to implement so don’t worry.

Total time complexity is O(N), with large constant factor.

Bus Route

Submissions: 8(Onsite)

Accepted: 2(Onsite)

First Solver: 한준구(Onsite), yongjun18(Open)

Proposed by: Yunpyo An

Bus Route

Is this DFS, or BFS problem?

You can solve this DFS or BFS. But, it have more easy way.

Bus Route

Is this DFS, or BFS problem?

You can solve this DFS or BFS. But, it have more easy way.

Bus Route

Theorem

Let P(G) is the number of vertices at tree graph G such that

deg(v) = 1. The least number of bus route is dP(G)/2e

Proof by mathematical induction. Continue on next slide.

Bus Route

Theorem

Let P(G) is the number of vertices at tree graph G such that

deg(v) = 1. The least number of bus route is dP(G)/2e

Base step : G ({v , v ′}, vv ′) is easy to check.

Induction hypothesis : dP(G)/2e is least number of bus route.

Bus Route

Theorem

Let P(G) is the number of vertices at tree graph G such that

deg(v) = 1. The least number of bus route is dP(G)/2e

Base step : G ({v , v ′}, vv ′) is easy to check.

Induction hypothesis : dP(G)/2e is least number of bus route.

Bus Route

Case 1

vi vn vj

Add stop(vertex) between current nodes which degree of stops are

over 1. P(G) = P(G + v). And change the bus route which pass

over road vivj to vivnvj . The number of minimum bus route is the

same as G . So, dP(G)/2e = dP(G + v)/2e.

Bus Route

Case 2

vi vn

Add stop current node which degree of stop is 1. And change the

bus route which pass over road vi to vivn. The number of minimum

bus route is the same as G . So, dP(G)/2e = dP(G + v)/2e.

Bus Route

Case 3

vi vj

vn

Add a new vertex next to the vertex that is not of degree 1.

Continue on next slide.

Bus Route

P(G + v) = P(G) + 1

P(G) is even number

Make new bus route. Which is vivn.

dP(G + v)/2e = dP(G)/2e+ 1.

P(G) is odd number

Let’s express each bus route as (vl , vm), vl , and vm are end

stop of bus route. P(G) is odd number, so least one pair of

bus route is not pair of degree 1 stop. WLOG, at (vl , vm), vm

is not degree 1 vertex. We can find new bus route of (vm, vn),

combine them. If route is duplicate, cut duplicate section. we

are done.

Bus Route

P(G + v) = P(G) + 1

P(G) is even number

Make new bus route. Which is vivn.

dP(G + v)/2e = dP(G)/2e+ 1.

P(G) is odd number

Let’s express each bus route as (vl , vm), vl , and vm are end

stop of bus route. P(G) is odd number, so least one pair of

bus route is not pair of degree 1 stop. WLOG, at (vl , vm), vm

is not degree 1 vertex. We can find new bus route of (vm, vn),

combine them. If route is duplicate, cut duplicate section. we

are done.

Bus Route

Given graph is tree. Because, there is no cycle route.

By our theorem, the answer is dP(G)/2e

Count each degree of stop, find P(G), and calculate

dP(G)/2e.

Time complexity is O(N). Space complexity is O(N).

Bus Route

Given graph is tree. Because, there is no cycle route.

By our theorem, the answer is dP(G)/2e

Count each degree of stop, find P(G), and calculate

dP(G)/2e.

Time complexity is O(N). Space complexity is O(N).

Bus Route

Given graph is tree. Because, there is no cycle route.

By our theorem, the answer is dP(G)/2e

Count each degree of stop, find P(G), and calculate

dP(G)/2e.

Time complexity is O(N). Space complexity is O(N).

Bus Route

Given graph is tree. Because, there is no cycle route.

By our theorem, the answer is dP(G)/2e

Count each degree of stop, find P(G), and calculate

dP(G)/2e.

Time complexity is O(N). Space complexity is O(N).

Clock

Submissions: 44(Onsite)

Accepted: 11(Onsite)

First Solver: 한승헌(Onsite), clrmt(Open)

Proposed by: Seoyoon Lee

Clock

second hand

it goes 360 degrees every 60 seconds.

Second hand Rotate 360/60 = 6 degrees per second.

So the second hand rotate 6 ∗ s degree in clockwise from the (0,1)

Clock

second hand

it goes 360 degrees every 60 seconds.

Second hand Rotate 360/60 = 6 degrees per second.

So the second hand rotate 6 ∗ s degree in clockwise from the (0,1)

Clock

minute hand

it goes 360 degrees every 60 minutes.

Minute hand Rotate 360/60 = 6 degrees per minute,

Minute hand Rotate (6/60) = 1/10 degree per second.

So the minute hand at (0,1) rotate 6 ∗m + s/10 degree in

clockwise from (0,1)

Clock

minute hand

it goes 360 degrees every 60 minutes.

Minute hand Rotate 360/60 = 6 degrees per minute,

Minute hand Rotate (6/60) = 1/10 degree per second.

So the minute hand at (0,1) rotate 6 ∗m + s/10 degree in

clockwise from (0,1)

Clock

minute hand

it goes 360 degrees every 60 minutes.

Minute hand Rotate 360/60 = 6 degrees per minute,

Minute hand Rotate (6/60) = 1/10 degree per second.

So the minute hand at (0,1) rotate 6 ∗m + s/10 degree in

clockwise from (0,1)

Clock

hour hand

360/12 = 30 degrees per hour

(30/60) = 0.5 degrees per minute

1/120 degrees per second

(h ∗ 30 + m ∗ 0.5 + s/120) degree in clockwise from the (0,1)

Clock

hour hand

360/12 = 30 degrees per hour

(30/60) = 0.5 degrees per minute

1/120 degrees per second

(h ∗ 30 + m ∗ 0.5 + s/120) degree in clockwise from the (0,1)

Clock

hour hand

360/12 = 30 degrees per hour

(30/60) = 0.5 degrees per minute

1/120 degrees per second

(h ∗ 30 + m ∗ 0.5 + s/120) degree in clockwise from the (0,1)

Clock

hour hand

360/12 = 30 degrees per hour

(30/60) = 0.5 degrees per minute

1/120 degrees per second

(h ∗ 30 + m ∗ 0.5 + s/120) degree in clockwise from the (0,1)

Clock

calculate minimum degree that any two line of three

line(OA,OB,OC) forms, so calculate difference of degree that

hour hand or minute hand or second hand ,

if difference is bigger than 180, subtract 360 by difference.

Clock

calculate minimum degree that any two line of three

line(OA,OB,OC) forms, so calculate difference of degree that

hour hand or minute hand or second hand ,

if difference is bigger than 180, subtract 360 by difference.

Clock

careful

Set input variable as double

print("%.6f")

cout << setprecision(6) << fixed;

Clock

careful

Set input variable as double

print("%.6f")

cout << setprecision(6) << fixed;

Clock

careful

Set input variable as double

print("%.6f")

cout << setprecision(6) << fixed;

Ctrl CV

Submissions: 4(Onsite)

Accepted: 1(Onsite)

First Solver: 한동규(Onsite), xiaowuc1(Open)

Proposed by: Seoyoung Park

Ctrl CV

There are two representative methods to solve this problem. To

handle the string with maximum size of 200,000 we need to use

the algorithm with time complesity at most O(N log2N).

SA & LCP

Binary Search & Hashing

Ctrl CV

To avoid terrible time complexity O(N3), we can use LCP to find

the longest common partial array.

Suffix Array: O(N logN)

LCP Array: O(N)

total: O(N logN)

Ctrl CV

Suffix Array is sorted array include all suffixes of given word.

O(N logN) algorithm for construct SA is well-known.

Combined with LCP (Longest Common Prefix), we can find

the longest common partial string. With SA, we can construct

LCP in O(N)

Ctrl CV

Another nice method is using Hashing. Reinterpret the problem as

find the common string with length L.

If there is common string with length L, There should be

common string with length (L-1). Therefore we can use the

method of binary search. O(logN)

Then, the problem can be interpreted to find the common

string with length L. We can solve this kind of problem

efficiently use Hash.

Ctrl CV

However, there is another condition we must concerned: the

longest common string appear disjoint in given string.

Thus, It is necessary to declare if the min index and max index stay

away in original string.

Studytime

Submissions: 5(Onsite)

Accepted: 1(Onsite)

First Solver: 한동규(Onsite), tpdnjs94(Open)

Proposed by: Jongseo Lee

Studytime

This problem is typical type of 0,1 knapsack problem.

i: number of subject

r: required study time

Impo: function that output possible maximum importance

Impo(i, r) for situation that have to choose ith subject or

not,if permitted maximum study time is r, output possible

maximum importance

Studytime

This problem is typical type of 0,1 knapsack problem.

i: number of subject

r: required study time

Impo: function that output possible maximum importance

Impo(i, r) for situation that have to choose ith subject or

not,if permitted maximum study time is r, output possible

maximum importance

Studytime

This problem is typical type of 0,1 knapsack problem.

i: number of subject

r: required study time

Impo: function that output possible maximum importance

Impo(i, r) for situation that have to choose ith subject or

not,if permitted maximum study time is r, output possible

maximum importance

Studytime

This problem is typical type of 0,1 knapsack problem.

i: number of subject

r: required study time

Impo: function that output possible maximum importance

Impo(i, r) for situation that have to choose ith subject or

not,if permitted maximum study time is r, output possible

maximum importance

Studytime

Situation that not select ith subject

temp1 = Impo(i + 1, r) the situation that before containing

ith subject, put ith subject

Studytime

Situation that not select ith subject

temp1 = Impo(i + 1, r) the situation that before containing

ith subject, put ith subject

Studytime

Situation that select ith subject

condition: r >= requiredtime[i]

temp2 = Impo(i − 1, r − study)time[i]) + value[i] the

situation that before containing ith subject, put ith subject

Select maximu value of temp1 and temp2

Studytime

Situation that select ith subject

condition: r >= requiredtime[i]

temp2 = Impo(i − 1, r − study)time[i]) + value[i] the

situation that before containing ith subject, put ith subject

Select maximu value of temp1 and temp2

Studytime

Situation that select ith subject

condition: r >= requiredtime[i]

temp2 = Impo(i − 1, r − study)time[i]) + value[i] the

situation that before containing ith subject, put ith subject

Select maximu value of temp1 and temp2

Studytime

Situation that select ith subject

condition: r >= requiredtime[i]

temp2 = Impo(i − 1, r − study)time[i]) + value[i] the

situation that before containing ith subject, put ith subject

Select maximu value of temp1 and temp2

